1 Spaces and subspaces

Vector Space Definition The set \mathcal{V} is called a vector space over \mathbb{F} when the vector addition and scalar multiplication operations satisfy the following properties.

- (A1) $\boldsymbol{x} + \boldsymbol{y} \in \mathcal{V}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$. This is called the closure property for vector addition.
- (A2) $(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z} = \boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})$ for every $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{V}$.
- (A3) There is an element $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for every $\mathbf{x} \in \mathcal{V}$.
- (A4) For each $x \in \mathcal{V}$, there is an element $(-x) \in \mathcal{V}$ such that x + (-x) = 0.
- (A5) $\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{y} + \boldsymbol{x}$ for every $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$.
- (M1) $\alpha \boldsymbol{x} \in \mathcal{V}$ for all $\alpha \in \mathbb{F}$ and $\boldsymbol{x} \in \mathcal{V}$. This is the closure property for scalar multiplication.
- (M2) $(\alpha\beta)\boldsymbol{x} = \alpha(\beta\boldsymbol{x})$ for all $\alpha, \beta \in \mathbb{F}$ and every $\boldsymbol{x} \in \mathcal{V}$.
- (M3) $\alpha(\boldsymbol{x} + \boldsymbol{y}) = \alpha \boldsymbol{x} + \beta \boldsymbol{y}$ for every $\alpha \in \mathbb{F}$ and all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$.
- (M4) $(\alpha + \beta)\boldsymbol{x} = \alpha \boldsymbol{x} + \beta \boldsymbol{x}$ for all $\alpha, \beta \in \mathbb{F}$ and every $\boldsymbol{x} \in \mathcal{V}$.
- (M5) $1\boldsymbol{x} = \boldsymbol{x}$ for every $\boldsymbol{x} \in \mathcal{V}$.

1. Let $\mathcal{V} = \{(x, y) \mid x, y \in \mathbb{R}\}$ be a given set, and define the operations addition + and scalar multiplication \cdot on the following way

addition +: $\forall (x, y), (a, b) \in \mathcal{V}$ (x, y) + (a, b) = (x + a, y + b), scalar multiplication: $\forall \alpha \in \mathbb{R}, \quad \forall (x, y) \in \mathcal{V}$

$$\alpha(x, y) = (\alpha y, \alpha x).$$

Is the set \mathcal{V} a vector space over \mathbb{R} ? Explain your answer!

2. Show that the set $\mathcal{V} = \{(x, x, y) \mid x, y \in \mathbb{R}\}$ is a vector space if the vector addition and scalar multiplication operations are defined on the following way

vector addition:
$$\forall (x, x, y), (a, a, b) \in \mathcal{V}$$

$$(x, x, y) + (a, a, b) = (x + a, x + a, y + b),$$

scalar multiplication: $\forall \alpha \in \mathbb{R}, \quad \forall (x, x, y) \in \mathcal{V}$

 $\alpha(x, x, y) = (\alpha x, \alpha x, \alpha y).$

3. Why must a real or complex nonzero vector space contain an infinite number of vectors?

4. Are the following sets with a given operations vector spaces? Explain your answer! (a) Set \mathbb{R}_0^+ , all no-negative real numbers, with usual addition and scalar multiplication. (b) Set \mathcal{V} of all polynomials or order ≥ 3 , including 0; operations are standard addition of polynomials, and standard scalar multiplication. (c) Set \mathcal{V} of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$, with operations from $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. (d) Set \mathcal{V} of all 2×2 matrices with equal sum of entries in each column; operations from $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. (e) Set \mathcal{V} of all 2×2 matrices which determinant is equal to zero; operations from $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. (g) Set $\mathcal{V} = \{(x, y) \mid x, y \in \mathbb{R}\}$ with ordinary addition, but scalar multiplication $\alpha(x, y) = (x, y)$ for all $\alpha \in \mathbb{R}$.

Subspaces Let S be a nonempty subset of a vector space \mathcal{V} over \mathbb{F} (symbolically, $S \subseteq \mathcal{V}$). If S is also a vector space over \mathbb{F} using the same addition and scalar multiplication operations, then S is said to be a *subspace* of \mathcal{V} . It's not necessary to check all 10 of the defining conditions in order to determine if a subset is also a subspace - only the closure conditions (A1) and (M1) need to be considered. That is, a nonempty subset S of a vector space \mathcal{V} is a subspace of \mathcal{V} if and only if

(A1) $\boldsymbol{x}, \ \boldsymbol{y} \in \mathcal{S} \Longrightarrow \boldsymbol{x} + \boldsymbol{y} \in \mathcal{S}$ and (M1) $\boldsymbol{x} \in \mathcal{S} \Longrightarrow \alpha \boldsymbol{x} \in \mathcal{S}$ for all $\alpha \in \mathbb{F}$.

5. (i) Show that the set $\mathcal{V} = \{(x, -x) \mid x \in \mathbb{R}\}$ is a vector subspace of \mathbb{R}^2 . (ii) For a given vector space \mathcal{V} , let $\mathcal{U} = \{\mathbf{0}\}$ be a set containing only the zero vector. Show that \mathcal{U} is a vector subspace of \mathcal{V} .

6. Determine which of the following subsets of \mathbb{R}^n are in fact subspaces of \mathbb{R}^n (n > 2). (a) { $x \mid x_i \ge 0$ }, (b) { $x \mid x_1 = 0$ }, (c) { $x \mid x_1x_2 = 0$ }, (d) { $x \mid \sum_{j=1}^n x_j = 0$ }, (e) { $x \mid \sum_{j=1}^n x_j = 1$ }, (f) { $x \mid Ax = b$, where $A_{m \times n} \ne 0$ and $b_{m \times 1} \ne 0$ }. 7. Determine which of the following subsets of $\operatorname{Mat}_{n \times n}(\mathbb{R})$ are in fact subspaces of $\operatorname{Mat}_{n \times n}(\mathbb{R})$. (a) The symmetric matrices. (b) The diagonal matrices. (c) The nonsingular matrices. (d) The singular matrices. (e) The triangular matrices. (f) The upper-triangular matrices. (g) All matrices that commute with a given matrix A. (h) All matrices such that $A^2 = A$. (i) All matrices such that $\operatorname{trace}(A) = 0$.

Spanning Sets

- For a set of vectors $S = \{v_1, v_2, ..., v_r\}$, the subspace span $(S) = \{\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_r v_r : \alpha_i \in \mathbb{F}\}$ generated by forming all linear combinations of vectors from S is called the *space spanned by* S.
- If \mathcal{V} is a vector space such that $\mathcal{V} = span(\mathcal{S})$, we say \mathcal{S} is a <u>spanning set</u> for \mathcal{V} . In other words, \mathcal{S} spans \mathcal{V} whenever each vector in \mathcal{V} is a linear combination of vectors from \mathcal{S} .

8. In the following it is given a set S. Describe what is span(S) and if it is possible give geometrical picture. (i) Let $u, v \in \mathbb{R}^3$ denote two noncollinear vectors, and let $S = \{u, v\}$. (ii) $S = \{(1, 1)^\top, (2, 2)^\top\}$. (iii) S contains unit vectors $\{e_1 = (1, 0, 0)^\top, e_2 = (0, 1, 0)^\top, e_3 = (0, 0, 1)^\top\}$. (iv) $S = \{e_1, e_2, ..., e_n\}$ is set of unit vectors from \mathbb{R}^n . (v) $S = \{1, x, x^2, ..., x^n\}$ (vi) $S = \{1, x, x^2, ...\}$.

9. Carefully explain is it true that $\operatorname{span}(\mathcal{S}) = \mathbb{R}^3$, if we have that $\mathcal{S} = \{(1,1,1), (1,-1,-1), (3,1,1)\}.$

10. Which of the following are spanning sets for

 $\mathbb{R}^{3}? (a) \{(1,1,1)\} (b) \{(1,0,0), (0,0,1)\}, (c) \\ \{(1,0,0), (0,1,0), (0,0,1), (1,1,1)\}, (d) \\ \{(1,2,1), (2,0,-1), (4,4,1)\}, (e) \\ \{(1,2,1), (2,0,-1), (4,4,0)\}.$

11. For a set of vectors $S = \{a_1, a_2, ..., a_n\}$ from a subspace $V \subseteq \operatorname{Mat}_{m \times 1}(\mathbb{R})$, let A be the matrix containing the a_i 's as its columns. Explain why Sspans V if and only if for each $b \in V$ there corresponds a column x such that Ax = b (i.e., if and only if Ax = b is a consistent system for every $b \in V$).

Sum of Subspaces If \mathcal{X} and \mathcal{Y} are subspaces of a vector space \mathcal{V} then the sum of \mathcal{X} and \mathcal{Y} is defined to be the set of all possible sums of vectors from \mathcal{X} with vectors from \mathcal{Y} . That is,

$$\mathcal{X} + \mathcal{Y} = \{ \boldsymbol{x} + \boldsymbol{y} \, | \, \boldsymbol{x} \in \mathcal{X} \text{ and } \boldsymbol{y} \in \mathcal{Y} \}.$$

- The sum $\mathcal{X} + \mathcal{Y}$ is again a subspace of \mathcal{V} .
- If $S_{\mathcal{X}}$, $S_{\mathcal{Y}}$ span \mathcal{X} , \mathcal{Y} then $S_{\mathcal{X}} \cup S_{\mathcal{Y}}$ spans $\mathcal{X} + \mathcal{Y}$.

12. If \mathcal{X} is a plane passing through the origin in \mathbb{R}^3 and \mathcal{Y} is the line through the origin that is perpendicular to \mathcal{X} , what is $\mathcal{X} + \mathcal{Y}$?

13. For a vector space \mathcal{V} , and for $\mathcal{M}, \mathcal{N} \subseteq V$, explain why span $(\mathcal{M} \cup \mathcal{N}) = \text{span}(\mathcal{M}) + \text{span}(\mathcal{N})$.

14. Let \mathcal{X} and \mathcal{Y} be two subspaces of a vector space \mathcal{V} . (a) Prove that the intersection $\mathcal{X} \cap \mathcal{Y}$ is also a subspace of \mathcal{V} . (b) Show that the union $\mathcal{X} \cup \mathcal{Y}$ need not be a subspace of \mathcal{V} .

15. For $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and $S \subseteq \operatorname{Mat}_{n \times 1}(\mathbb{R})$, the set $A(S) = \{Ax \mid x \in S\}$ contains all possible products of A with vectors from S. We refer to A(S) as the set of <u>images</u> of S under A. (a) If S is a subspace of \mathbb{R}^n , prove A(S) is a subspace of \mathbb{R}^m . (b) If $s_1, s_2, ..., s_k$ spans S, show $As_1, As_2, ..., As_k$ spans A(S).

16. Let $\mathcal{L} =$

 $\left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + x_2 = 0, -x_1 + 2x_2 + x_3 = 0 \right\}.$ Show that \mathcal{L} is subspace of vector space \mathbb{R}^3 .

17. Let $\mathcal{V} = \mathbb{R}^n$ and let $(a_1, a_2, ..., a_n)^\top$ be some fixed vector from \mathcal{V} . Show that the family of all elements $(x_1, x_2, ..., x_n)^\top$ from \mathcal{V} with the property $a_1x_1 + ... + a_nx_n = 0$ is subspace of vector space \mathcal{V} .

In another words, show that

$$\mathcal{M} = \{(x_1, x_2, ..., x_n)^\top \in \mathcal{V} \mid a_1 x_1 + ... + a_n x_n = 0\}$$

is subspace of \mathcal{V} .

18. Let \mathcal{V} denote vector space of all matrices of form 2×2 over the field of real numbers. Let \mathcal{W}_1 be the set of all matrices of form

$$\begin{pmatrix} x & -x \\ y & z \end{pmatrix}$$

and let \mathcal{W}_2 be the set of all matrices of the form

$$\begin{pmatrix} a & b \\ -a & c \end{pmatrix}$$

Show that \mathcal{W}_1 and \mathcal{W}_2 are subspaces of \mathcal{V} .

19. Let

z

$$\mathcal{V} = \left\{ \begin{bmatrix} z_1 & z_2 \\ z_3 & z_4 \end{bmatrix} \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) \mid \\ 1 - 2\overline{z_2} + z_3 = 0, z_1 + \overline{z_2 + z_3} + z_4 = 0 \right\}$$

be a given set. Show that \mathcal{V} is real subspace of vector space $\operatorname{Mat}_{2\times 2}(\mathbb{C})$.

InC: 1, 3, 6, 8, 9, 12, 15. HW: 16, 17, 18, 19.