1 Spaces and subspaces

Vector Space Definition The set \mathcal{V} is called a vector space over \mathbb{F} when the vector addition and scalar multiplication operations satisfy the following properties.
(A1) $\boldsymbol{x}+\boldsymbol{y} \in \mathcal{V}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$. This is called the closure property for vector addition.
(A2) $(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}=\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})$ for every $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{V}$.
(A3) There is an element $\mathbf{0} \in \mathcal{V}$ such that $\boldsymbol{x}+\mathbf{0}=\boldsymbol{x}$ for every $\boldsymbol{x} \in \mathcal{V}$.
(A4) For each $\boldsymbol{x} \in \mathcal{V}$, there is an element $(-\boldsymbol{x}) \in \mathcal{V}$ such that $\boldsymbol{x}+(-\boldsymbol{x})=\mathbf{0}$.
(A5) $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$ for every $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$.
(M1) $\alpha \boldsymbol{x} \in \mathcal{V}$ for all $\alpha \in \mathbb{F}$ and $\boldsymbol{x} \in \mathcal{V}$. This is the closure property for scalar multiplication.
(M2) $(\alpha \beta) \boldsymbol{x}=\alpha(\beta \boldsymbol{x})$ for all $\alpha, \beta \in \mathbb{F}$ and every $\boldsymbol{x} \in \mathcal{V}$.
(M3) $\alpha(\boldsymbol{x}+\boldsymbol{y})=\alpha \boldsymbol{x}+\beta \boldsymbol{y}$ for every $\alpha \in \mathbb{F}$ and all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}$.
(M4) $(\alpha+\beta) \boldsymbol{x}=\alpha \boldsymbol{x}+\beta \boldsymbol{x}$ for all $\alpha, \beta \in \mathbb{F}$ and every $\boldsymbol{x} \in \mathcal{V}$.
(M5) $1 \boldsymbol{x}=\boldsymbol{x}$ for every $\boldsymbol{x} \in \mathcal{V}$.

1. Let $\mathcal{V}=\{(x, y) \mid x, y \in \mathbb{R}\}$ be a given set, and define the operations addition + and scalar multiplication • on the following way

$$
\begin{gathered}
\text { addition }+: \quad \forall(x, y),(a, b) \in \mathcal{V} \\
(x, y)+(a, b)=(x+a, y+b)
\end{gathered}
$$

scalar multiplication: $\quad \forall \alpha \in \mathbb{R}, \quad \forall(x, y) \in \mathcal{V}$

$$
\alpha(x, y)=(\alpha y, \alpha x)
$$

Is the set \mathcal{V} a vector space over \mathbb{R} ? Explain your answer!
2. Show that the set $\mathcal{V}=\{(x, x, y) \mid x, y \in \mathbb{R}\}$ is a vector space if the vector addition and scalar multiplication operations are defined on the following way

$$
\begin{aligned}
& \text { vector addition: } \forall(x, x, y),(a, a, b) \in \mathcal{V} \\
& (x, x, y)+(a, a, b)=(x+a, x+a, y+b)
\end{aligned}
$$

scalar multiplication: $\forall \alpha \in \mathbb{R}, \quad \forall(x, x, y) \in \mathcal{V}$

$$
\alpha(x, x, y)=(\alpha x, \alpha x, \alpha y)
$$

3. Why must a real or complex nonzero vector space contain an infinite number of vectors?
4. Are the following sets with a given operations vector spaces? Explain your answer! (a) Set \mathbb{R}_{0}^{+}, all no-negative real numbers, with usual addition and scalar multiplication. (b) Set \mathcal{V} of all polynomials or order ≥ 3, including 0 ; operations are standard addition of polynomials, and standard scalar multiplication. (c) Set \mathcal{V} of all 2×2 matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$, with operations from $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. (d) Set \mathcal{V} of all 2×2 matrices with equal sum of entries in each column; operations from $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. (e) Set \mathcal{V} of all 2×2 matrices which determinant is equal to zero; operations from $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. (g) Set
$\mathcal{V}=\{(x, y) \mid x, y \in \mathbb{R}\}$ with ordinary addition, but scalar multiplication $\alpha(x, y)=(x, y)$ for all $\alpha \in \mathbb{R}$.

Subspaces Let \mathcal{S} be a nonempty subset of a vector space \mathcal{V} over \mathbb{F} (symbolically, $\mathcal{S} \subseteq \mathcal{V})$. If \mathcal{S} is also a vector space over \mathbb{F} using the same addition and scalar multiplication operations, then \mathcal{S} is said to be a subspace of \mathcal{V}. It's not necessary to check all 10 of the defining conditions in order to determine if a subset is also a subspace - only the closure conditions (A1) and (M1) need to be considered. That is, a nonempty subset \mathcal{S} of a vector space \mathcal{V} is a subspace of \mathcal{V} if and only if
(A1) $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S} \Longrightarrow \boldsymbol{x}+\boldsymbol{y} \in \mathcal{S} \quad$ and $\quad(\mathrm{M} 1) \boldsymbol{x} \in \mathcal{S} \Longrightarrow \alpha \boldsymbol{x} \in \mathcal{S} \quad$ for all $\alpha \in \mathbb{F}$.
5. (i) Show that the set $\mathcal{V}=\{(x,-x) \mid x \in \mathbb{R}\}$ is a vector subspace of \mathbb{R}^{2}. (ii) For a given vector space \mathcal{V}, let $\mathcal{U}=\{\mathbf{0}\}$ be a set containing only the zero vector. Show that \mathcal{U} is a vector subspace of \mathcal{V}.
6. Determine which of the following subsets of \mathbb{R}^{n} are in fact subspaces of $\mathbb{R}^{n}(n>2)$. (a) $\left\{\boldsymbol{x} \mid x_{i} \geq 0\right\}$, (b) $\left\{\boldsymbol{x} \mid x_{1}=0\right\}$, (c) $\left\{\boldsymbol{x} \mid x_{1} x_{2}=0\right\}$, (d) $\left\{\boldsymbol{x} \mid \sum_{j=1}^{n} x_{j}=0\right\}$, (e) $\left\{\boldsymbol{x} \mid \sum_{j=1}^{n} x_{j}=1\right\}$, (f) $\left\{\boldsymbol{x} \mid A \boldsymbol{x}=\boldsymbol{b}\right.$, where $A_{m \times n} \neq \mathbf{0}$ and $\left.\boldsymbol{b}_{m \times 1} \neq 0\right\}$.
7. Determine which of the following subsets of $\operatorname{Mat}_{n \times n}(\mathbb{R})$ are in fact subspaces of $\operatorname{Mat}_{n \times n}(\mathbb{R})$. (a) The symmetric matrices. (b) The diagonal matrices. (c) The nonsingular matrices. (d) The singular matrices. (e) The triangular matrices. (f) The upper-triangular matrices. (g) All matrices that commute with a given matrix A. (h) All matrices such that $A^{2}=A$. (i) All matrices such that $\operatorname{trace}(A)=0$.

$\underline{\text { Spanning Sets }}$

- For a set of vectors $\mathcal{S}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$, the subspace $\operatorname{span}(\mathcal{S})=\left\{\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}+\ldots+\alpha_{r} \boldsymbol{v}_{r}: \alpha_{i} \in \mathbb{F}\right\}$ generated by forming all linear combinations of vectors from \mathcal{S} is called the space spanned by \mathcal{S}.
- If \mathcal{V} is a vector space such that $\mathcal{V}=\operatorname{span}(\mathcal{S})$, we say \mathcal{S} is a spanning set for \mathcal{V}. In other words, \mathcal{S} spans \mathcal{V} whenever each vector in \mathcal{V} is a linear combination of vectors from \mathcal{S}.

8. In the following it is given a set \mathcal{S}. Describe what is $\operatorname{span}(\mathcal{S})$ and if it is possible give geometrical picture. (i) Let $u, v \in \mathbb{R}^{3}$ denote two noncollinear vectors, and let $\mathcal{S}=\{u, v\}$. (ii) $\mathcal{S}=\left\{(1,1)^{\top},(2,2)^{\top}\right\}$. (iii) \mathcal{S} contains unit vectors $\left\{e_{1}=(1,0,0)^{\top}, e_{2}=(0,1,0)^{\top}, e_{3}=(0,0,1)^{\top}\right\}$. (iv) $\mathcal{S}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ is set of unit vectors from \mathbb{R}^{n}. (v) $\mathcal{S}=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ (vi) $\mathcal{S}=\left\{1, x, x^{2}, \ldots\right\}$.
9. Carefully explain is it true that $\operatorname{span}(\mathcal{S})=\mathbb{R}^{3}$, if we have that $\mathcal{S}=\{(1,1,1),(1,-1,-1),(3,1,1)\}$.
10. Which of the following are spanning sets for
\mathbb{R}^{3} ? (a) $\{(1,1,1)\}$ (b) $\{(1,0,0),(0,0,1)\},(c)$
$\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\},(\mathrm{d})$
$\{(1,2,1),(2,0,-1),(4,4,1)\}$, (e)
$\{(1,2,1),(2,0,-1),(4,4,0)\}$.
11. For a set of vectors $\mathcal{S}=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right\}$ from a subspace $\mathcal{V} \subseteq \operatorname{Mat}_{m \times 1}(\mathbb{R})$, let A be the matrix containing the \boldsymbol{a}_{i} 's as its columns. Explain why \mathcal{S} spans \mathcal{V} if and only if for each $\boldsymbol{b} \in \mathcal{V}$ there corresponds a column \boldsymbol{x} such that $A \boldsymbol{x}=\boldsymbol{b}$ (i.e., if and only if $A \boldsymbol{x}=\boldsymbol{b}$ is a consistent system for every $\boldsymbol{b} \in \mathcal{V})$.

Sum of Subspaces If \mathcal{X} and \mathcal{Y} are subspaces of a vector space \mathcal{V} then the sum of \mathcal{X} and \mathcal{Y} is defined to be the set of all possible sums of vectors from \mathcal{X} with vectors from \mathcal{Y}. That is,

$$
\mathcal{X}+\mathcal{Y}=\{\boldsymbol{x}+\boldsymbol{y} \mid \boldsymbol{x} \in \mathcal{X} \text { and } \boldsymbol{y} \in \mathcal{Y}\} .
$$

- The $\operatorname{sum} \mathcal{X}+\mathcal{Y}$ is again a subspace of \mathcal{V}.
- If $\mathcal{S}_{\mathcal{X}}, \mathcal{S}_{\mathcal{Y}}$ span \mathcal{X}, \mathcal{Y} then $\mathcal{S}_{\mathcal{X}} \cup \mathcal{S}_{\mathcal{Y}}$ spans $\mathcal{X}+\mathcal{Y}$.

12. If \mathcal{X} is a plane passing through the origin in \mathbb{R}^{3} and \mathcal{Y} is the line through the origin that is perpendicular to \mathcal{X}, what is $\mathcal{X}+\mathcal{Y}$?
13. For a vector space \mathcal{V}, and for $\mathcal{M}, \mathcal{N} \subseteq V$, explain why $\operatorname{span}(\mathcal{M} \cup \mathcal{N})=\operatorname{span}(\mathcal{M})+\operatorname{span}(\mathcal{N})$.
14. Let \mathcal{X} and \mathcal{Y} be two subspaces of a vector space \mathcal{V}. (a) Prove that the intersection $\mathcal{X} \cap \mathcal{Y}$ is also a subspace of \mathcal{V}. (b) Show that the union $\mathcal{X} \cup \mathcal{Y}$ need not be a subspace of \mathcal{V}.
15. For $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and $\mathcal{S} \subseteq \operatorname{Mat}_{n \times 1}(\mathbb{R})$, the set $A(\mathcal{S})=\{A x \mid x \in \mathcal{S}\}$ contains all possible products of A with vectors from \mathcal{S}. We refer to $A(\mathcal{S})$ as the set of images of \mathcal{S} under A. (a) If \mathcal{S} is a subspace of \mathbb{R}^{n}, prove $A(\mathcal{S})$ is a subspace of \mathbb{R}^{m}. (b) If $s_{1}, s_{2}, \ldots, s_{k}$ spans \mathcal{S}, show $A s_{1}, A s_{2}, \ldots, A s_{k}$ spans $A(\mathcal{S})$.
16. Let $\mathcal{L}=$
$\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}=0,-x_{1}+2 x_{2}+x_{3}=0\right\}$. Show that \mathcal{L} is subspace of vector space \mathbb{R}^{3}.
17. Let $\mathcal{V}=\mathbb{R}^{n}$ and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{\top}$ be some fixed vector from \mathcal{V}. Show that the family of all elements $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}$ from \mathcal{V} with the property $a_{1} x_{1}+\ldots+a_{n} x_{n}=0$ is subspace of vector space \mathcal{V}.

In another words, show that

$$
\mathcal{M}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top} \in \mathcal{V} \mid a_{1} x_{1}+\ldots+a_{n} x_{n}=0\right\}
$$

is subspace of \mathcal{V}.
18. Let \mathcal{V} denote vector space of all matrices of form 2×2 over the field of real numbers. Let \mathcal{W}_{1} be the set of all matrices of form

$$
\left(\begin{array}{cc}
x & -x \\
y & z
\end{array}\right)
$$

and let \mathcal{W}_{2} be the set of all matrices of the form

$$
\left(\begin{array}{cc}
a & b \\
-a & c
\end{array}\right) .
$$

Show that \mathcal{W}_{1} and \mathcal{W}_{2} are subspaces of \mathcal{V}.
19. Let

$$
\begin{gathered}
\mathcal{V}=\left\{\left.\left[\begin{array}{ll}
z_{1} & z_{2} \\
z_{3} & z_{4}
\end{array}\right] \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) \right\rvert\,\right. \\
\left.z_{1}-2 \overline{z_{2}}+z_{3}=0, z_{1}+\overline{z_{2}+z_{3}}+z_{4}=0\right\}
\end{gathered}
$$

be a given set. Show that \mathcal{V} is real subspace of vector space $\operatorname{Mat}_{2 \times 2}(\mathbb{C})$.

InC: $1,3,6,8,9,12,15 . \mathrm{HW}: 16,17,18,19$.

